
Manifold 0.11 User Guide

February 3, 2014

1 Introduction
Manifold is a parallel discrete event simulation framework for simulation of modern multicore
computer architectures. The software mainly consists of two layers: a simulation kernel layer, and a
model layer that contains a few computer architecture models. In addition, Manifold also provides a
few ready-to-use simulator programs. This user guide describes how to obtain Manifold source code,
and how to build and run the simulator programs.

2 Overview

Manifold is designed for parallel simulation of multicore systems. The general simulation system is
shown in the figure below.

At run-time, instruction streams are fed to the multicore system model for simulation. Example sources
of instructions include PIN trace files and the QSim multicore emulator. Components of the system
model can be assigned to different host machines for parallel simulation.

The following are the general steps that a simulator program needs to follow to create a systemmodel
for simulation.

• Instantiating the various component models, such as processor model, cache model and so on.

• Connecting the components with Manifold links.

• Setting a simulation stop time.

• Starting the simulation by calling Manifold :: Run().

The simulator programs that are part of the distribution package can serve as examples for how to write
simulator programs with Manifold.

The component models that are included in the package can be used in building system models. The
user can also port third-party components to Manifold and build system models using such
components.

Major features of Manifold include the following:

• Supporting both sequential and parallel simulations.

• Supporting three simulation paradigms: discrete time event-driven simulation, time-stepped
simulation, and mixed event-driven and time-stepped simulation.

• Supporting the QSim multicore emulator front-end.

• The Energy Introspector (EI) power, energy, thermal, and reliability modeling library for
integration

• with multicore processor models.

• Standard interfaces between components allow mix-and-match of components.

• Open software architecture allows easy porting of third-party components.

3 Current Release

The current release is Release 0.11. The software is distributed as a source code package that contains
the following:

• The parallel simulation kernel.

• Models:

◦ Zesto: a cycle-level x86 processor model.

◦ SPX: a superscalar x86 processor model.

◦ Simple-proc: a 1-IPC proxessor model.

◦ Mcp-cache: a coherence cache model.

◦ Simple-cache: a simple write-through cache model.

◦ Iris: a cycle-level interconnection network model.

◦ CaffDRAM: a DRAM controller model.

• Simulator programs.

Zesto

• A cycle-level x86 processor model. This model can accept intruction streams from three
different sources: trace files, QSim server, and QSim library.

• Both in-order and out-of-order models are included.

SPX

Not as detailed as Zesto, SPX models all the important components of a modern superscalar processor.
It can accept instruction streams from QSim server or QSim library.

Simple-proc

A simple 1-IPC (instruction per cycle) processor model. It can accept instruction streams from three
different sources: trace files, QSim server, and QSim library.

Mcp-cache

Supports the MESI protocol.

Simple-cache

A simple write-through cache model. Currently it can only be used in a single-core model.

Iris

• Supports ring and torus.
• Supports virtual channels.
• Supports two virtual networks.
• Supports flow-control between routers, between router and interface, and between interface and

terminal.
• Supports single-flit packets.

CaffDRAM

Supports flow control between the memory controller model and the network model.

3.1 Testing and Portability

• Manifold has been tested on the PARSEC and SPLASH-2 benchmarks.

• Manifold has been tested under the the following operating systems:

◦ Ubuntu 10.04, 12.04.

◦ Fedora release 17.

• Manifold has been tested with Openmpi and MPICH2.

4 Directory Structure

The Manifold source code is organized as follows:

 ROOT
 |... code
 |... doc
 |... kernel
 |... models
 | |... cache
 | | |... mcp-cache
 | | |... simple-cache
 | |... memory
 | | |... CaffDRAM
 | |... network
 | | |... iris
 | |... processor
 | |... simple-proc
 | |... zesto
 |... simulator
 |... smp
 | |... common
 | |... config
 | |... QsimClient
 | |... QsimLib
 | |... TraceProc
 |... smp2
 |... common
 |... config
 |... QsimClient
 |... QsimLib
 |... TraceProc

where ROOT represents the root of the source tree.

The simulator directory

There are two sets of simulator programs, under smp and smp2, respectively. Programs under smp use
a fixed set of components, while programs under smp2 allows one component to be replaced by
another by simply changing a configure file. For example, by changing one line of code, the user can
replace Zesto with SPX.

Under each of smp and smp2, there are a total of six simulator programs, two each under
QsimClient, QsimLib, and TraceProc. The difference is the source of instruction streams.
Programs under QsimClient use QSim server to get instructions. Those under QsimLib are built

with the QSim libraries. And those under TraceProc use PIN traces.

The common code of the simulator programs is located in common. The directory config contains
configuration files for the simulator programs.

5 Build Process Overview

To build and run the simulator programs that are part of the software package, you will need to perform
the following steps:

• [Optional] Install required packages.
• [Optional] Download and build QSim.
• Build Manifold libraries.
• Build the simulator program(s).
• Run the simulators.

The simulators can respectively take instructions from three different sources: trace files, QSim library,
and QSim server. Depending on which source you use, some of the steps above may be optional.

The following explains each step in detail.

6 Install Required Packages
Before you proceed, you need to install the following required packages.

• mpi: We have tested with openmpi, so it is recommended.
• libconfig++: The simulators require this package.

7 Download and Build QSim
If you choose to use QSim to get instructions, you need to build and install QSim first.

7.1 Download

We recommend using QSim version 0.1.5, which is available at the Manifold web site:

• http://manifold.gatech.edu/download

7.2 Build and Installation

Instructions for building and installing QSim can be found in the INSTALL file in the root directory of

http://manifold.gatech.edu/download

QSim source code.

In addition to the QSim libaries, you also need to do the following:
• build the QSim server.
• build and install the QSim client library.

All the instructions are in the INSTALL file.

After you are finished, you installation directory should look like the following, assuming
QSIM_INSTALL is the root of the installation directory.

$ ls <QSIM_INSTALL>/lib
libqemu-qsim.so libqsim-client.so libqsim.so

$ ls <QSIM_INSTALL>/include
mgzd.h qsim-client.h qsim.h qsim-load.h qsim-net.h qsim-regs.h qsim-vm.h

8 Download and Build Manifold Libraries
There are two ways to download Manifold source code: from the Manifold website or through SVN
checkout. Depending on which way is used to obtain the source code, the build process is slightly
different.

8.1 Download Manifold source package

Manifold source package is available at the Manifold website:

• http://manifold.gatech.edu/download

After download, follow the following instructions to build the manifold libraries:

1. Untar the source package.

$ tar xvfz manifold-0.11.1.tar.gz

2. Go to the code subdirectory.

$ cd manifold-0.11.1/code

3. Run configure and make.

$./configure [--prefix=INSTALL_PATH]
$ make

The default installation directory is /usr/local/lib. If you want to install in a different
location, the path of that location should be passed to configure. In addition, if QSim is
installed in a location other than the default, you need to tell configure that location.

http://manifold.gatech.edu/download

Options that you can specify for configure are described below.

4. Optionally, install the libraries.

$ make install

8.2 Download Manifold source code through SVN checkout

Manifold source code is available through SVN checkout at the following address:

• https://svn.ece.gatech.edu/repos/Manifold/tags/0.11.1

To build the un-packaged source code, you need to have autotools package installed on your machine.

1. From the code subdirectory, run autoreconf.

$ cd code
$./autoreconf -si

This would create the configure script.

2. Run configure and make.

$./configure [--prefix=INSTALL_PATH]
$ make

3. Optionally, install the libraries.

$ make install

8.3 Configure options

This section describes all of the options you can use when running the configure script.

• --prefix=PREFIX
By default, the header files and libraries will be installed in /usr/local/include and
/usr/local/lib, respectively. If you want to install the files somewhere else, you should
use this option, and the files will be installed in PREFIX/include and PREFIX/lib,
respectively.

• --disable-para-sim
By default, the Manifold libraries are built for parallel simulation with MPI. If you do not want
to use MPI and therefore only run the simulators in sequential mode, you need to specify this
option to disable parallel simulation.

• --without-qsim
By default, when you build Manifold, you would have already built and installed QSim. If you
do not want to use QSim, use this option when you run configure. When you use this option,
the simulator can only use trace files.

https://svn.ece.gatech.edu/repos/Manifold/tags/0.8

• --enable-kernel-large-data
By default, the maximum size of data that are sent between components is 1024 bytes. If this is
not big enough, or the maximum size is not known in advance, then this option should be used.

• --disable-stats
By default, the Manifold kernel and computer architecture models all collect statistics at run
time. Use this option to disable run-time collection of statistics.

• KERINC=KERNEL_LOCATION
This option specifies where the kernel header files are installed. This is useful when the kernel
and the models are built separately.

• QSIMINC=QSIM_LOCATION
This option specifies the location where QSim is installed. By default, QSim is installed under
/usr/local. This option is useful when QSim is installed in a different location.

• --enable-forecast-null
Use this option if you want to use the Forecast Null Message algorithm.

9 Build the Simulator Program
The simulator programs are located in ROOT/code/simulator/smp and
ROOT/code/simulator/smp2. In the following we only discuss the programs in smp. Programs
in smp2 are very similar.

There are three subdirectories for three types of simulators, based on how they get instructions:

• Programs under QsimClient use QSim server to get instructions. To build these simulators,
you must first build and install QSim.

• Programs under QsimLib use QSim libraries. To build these simulators, you must first build
and install QSim.

• Programs under TraceProc use trace files in the format of Intel's Pin.

In addition there are two other subdirectories:

• Subdirectory common contains code that is shared by all simulators.

• Subdirectory config contains configuration files that are shared by all simulators.

To build the simulators, follow the following steps. Here we use the simulators under QsimClient as
an example.

1. Go to the simulator source directory.

$ cd ROOT/code/simulator/zesto/QsimClient

2. Run make. It is likely that you need to modify the Makefile so the header files and libraries can

be found.

$ make

10 Start the Simulator
In each of the three subdirectories, i.e., QsimClient, QsimLib, and , there is a program called
smp_llp. This program simulates the following system model, where each core node has a processor
core, a private L1 cache, and a shared L2 slice.

Figure 1 System Model Simulated by smp_llp.

We describe how to start the simulators in each of the three subdirectories.

10.1Start the Simulators in QSimClient

These simulators require QSim server be started first.

To start the QSim server, run the following commands:

$ cd QSIM_ROOT/remote/server
$ make
$./qsim-server <port> <state_file> <benchmark>

where

• <port> is the TCP port number the server uses. Use any number you want.
• <state_file> is the state file. QSim is an emulator of a multicore shared-memory machine.

The state file is the snapshot of the emulated machine after the OS has booted.
• <benchmark> is the tar file containing the application program and its data. See QSim

instructions on how to build benchmark tar files.

After the QSim server has started, the simulator can be started.

If QSim is installed in /usr/local, do the following,

$ cd SIMULATOR_ROOT
$ mpirun -np <NP> <prog> <conf_file> <zesto_conf_file> <server> <port>

If Qsim is not installed in /usr/local, do the following, assuming QSim installation path is
QSIM_INSTALL.

$ cd SIMULATOR_ROOT
$ QSIM_PREFIX=<QSIM_INSTALL> LD_LIBRARY_PATH=<QSIM_INSTALL>/lib mpirun
-np <NP> <prog> <conf_file> <zesto_conf_file> <server> <port>

where

• <NP> is the number of logical processes (LPs), or MPI ranks. For parallel simulation, currently
the simulators support 1, 2, or N+1 LPs, where N is the number of simulated cores.

• <prog> is the simulator, including zesto_llp, and zesto_l1l2.
• <conf_file> is the configuration file for the system being simulated. The system

configuration is defined in libconfig format.
• <zesto_conf_file> is the configuration file for Zesto, our processor model.
• <server> is the name or IP address of the QSim server.
• <port> is the TCP port number used by the QSim server.

For example:

$ mpirun -np 2 smp_llp ../config/conf2x2_iris_torus_llp.cfg ../config/6.cfg
localhost 12345

10.2Start the Simulators in QSimLib

Simulators in this subdirectory can only be run with 1 LP, or in sequential mode.

If QSim is installed in /usr/local, do the following.

$ mpirun -np 1 <prog> <conf_file> <zesto_conf_file> <state_file> <benchmark>

If Qsim is not installed in /usr/local, do the following, assuming QSim installation path is
QSIM_INSTALL.

$ QSIM_PREFIX=<QSIM_INSTALL> LD_LIBRARY_PATH=<QSIM_INSTALL>/lib mpirun
-np 1 <prog> <conf_file> <zesto_conf_file> <state_file> <benchmark>

where

• <prog> is the simulator, including zesto_llp, and zesto_l1l2.
• <conf_file> is the configuration file for the system being simulated. The system

configuration is defined in libconfig format.
• <zesto_conf_file> is the configuration file for Zesto, our processor model.
• <state_file> is QSim's state file.
• <benchmark> is the application tar file.

For example:

$ mpirun -np 1 smp_llp ../config/conf4x1_ring_llp.cfg ../config/6.cfg myState_16
myBench.tar

10.3Start the Simulators in TraceProc

These simulators use Pin traces.

$ mpirun -np <NP> <prog> <conf_file> <zesto_conf_file> <trace_file_basename>

where

• <NP> is the number of logical processes (LPs), or MPI ranks. For parallel simulation, currently
the simulators support 1, 2, or N+1 LPs, where N is the number of simulated cores.

• <prog> is the simulator, including zesto_llp, and zesto_l1l2.
• <conf_file> is the configuration file for the system being simulated. The system

configuration is defined in libconfig format.
• <zesto_conf_file> is the configuration file for Zesto, our processor model.
• <trace_file_basename> is the base name of the trace files. All trace files must have the

same base name and be named <base_name>0, <base_name>1, <base_name>2, etc. For
example, if the trace files are myFile0, myFile1, then the base name is myFile.

For example:

$ mpirun -np 2 smp_llp ../config/conf2x2_iris_torus_llp.cfg ../config/6.cfg
myTrace

11 Common Problems
The following is a list of commonly encountered problems, and how to solve them.

• mpirun: command not found
Solution: If you are using openmpi, install the openmpi-bin package.

• simulation_stop has incorrect type.
Solution: Open the configuration file, append an 'L' to the number you specify for
simulation_stop. For example, if it was "simulation_stop = 1000", change it to "simulation_stop
= 1000L".

• cp: cannot stat `./libqemu.so': No such file or directory
system("cp ./libqemu.so /tmp/qsim_WKLK7m") returned 256.
Solution: Specify LD_LIBRARY_PATH as shown above.

• cp: cannot stat `/usr/local/lib/libqemu-qsim.so': No such file or directory
system("cp /usr/local/lib/libqemu-qsim.so /tmp/qsim_eIwV0x") returned 256.
Solution: Specify QSIM_PREFIX as shown above.

	1 Introduction
	2 Overview
	3 Current Release
	3.1 Testing and Portability

	4 Directory Structure
	5 Build Process Overview
	6 Install Required Packages
	7 Download and Build QSim
	7.1 Download
	7.2 Build and Installation

	8 Download and Build Manifold Libraries
	8.1 Download Manifold source package
	8.2 Download Manifold source code through SVN checkout
	8.3 Configure options

	9 Build the Simulator Program
	10 Start the Simulator
	10.1 Start the Simulators in QSimClient
	10.2 Start the Simulators in QSimLib
	10.3 Start the Simulators in TraceProc

	11 Common Problems

